Advertisement
*
Reproduction permitted for personal use only. For reprints and reprint permission, contact reprints@wistechnology.com.

Researcher use brain interface to post to Twitter

MADISON - In early April, Adam Wilson posted a status update on the social networking Web site Twitter - just by thinking about it.

Just 23 characters long, his message, "using EEG to send tweet," demonstrates a natural, manageable way in which "locked-in" patients can couple brain-computer interface technologies with modern communication tools. See video of Wilson using the brain-computer interface to post to Twitter.

A University of Wisconsin-Madison biomedical engineering doctoral student, Wilson is among a growing group of researchers worldwide who aim to perfect a communication system for users whose bodies do not work, but whose brains function normally. Among those are people who have amyotrophic lateral sclerosis (ALS), brain-stem stroke or high spinal cord injury.

Some brain-computer interface systems employ an electrode-studded cap wired to a computer. The electrodes detect electrical signals in the brain - essentially, thoughts - and translate them into physical actions, such as a cursor motion on a computer screen. "We started thinking that moving a cursor on a screen is a good scientific exercise," says Justin Williams, a UW-Madison assistant professor of biomedical engineering and Wilson's adviser. "But when we talk to people who have locked-in syndrome or a spinal-cord injury, their No. 1 concern is communication."

In collaboration with research scientist Gerwin Schalk and colleagues at the Wadsworth Center in Albany, N.Y., Williams and Wilson began developing a simple, elegant communication interface based on brain activity related to changes in an object on screen.
Advertisement
The interface consists, essentially, of a keyboard displayed on a computer screen. "The way this works is that all the letters come up, and each one of them flashes individually," says Williams. "And what your brain does is, if you're looking at the 'R' on the screen and all the other letters are flashing, nothing happens. But when the 'R' flashes, your brain says, 'Hey, wait a minute. Something's different about what I was just paying attention to.' And you see a momentary change in brain activity."

Wilson, who used the interface to post the Twitter update, likens it to texting on a cell phone. "You have to press a button four times to get the character you want," he says of texting. "So this is kind of a slow process at first."

However, as with texting, users improve as they practice using the interface. "I've seen people do up to eight characters per minute," says Wilson.

A free service, Twitter has been called a "micro-blogging" tool. User updates, called tweets, have a 140-character limit - a manageable message length that fits locked-in users' capabilities, says Williams.

Tweets are displayed on the user's profile page and delivered to other Twitter users who have signed up to receive them. "So someone could simply tell family and friends how they're feeling today," says Williams. "People at the other end can be following their thread and never know that the person is disabled. That would really be an enabling type of communication means for those people, and I think it would make them feel, in the online world, that they're not that much different from everybody else. That's why we did these things."

Schalk agrees. "This is one of the first - and perhaps most useful - integrations of brain-computer interface techniques with Internet technologies to date," he says.

While widespread implementation of brain-computer interface technologies is still years down the road, Wadsworth Center researchers, as well as those at the University of Tübingen in Germany, are starting in-home trials of the equipment. Wilson, who will finish his Ph.D. soon and begin postdoctoral research at Wadsworth, plans to include Twitter in the trials.

Williams hopes the Twitter application is the nudge researchers need to refine development of the in-home technology. "A lot of the things that we've been doing are more scientific exercises," he says. "This is one of the first examples where we've found something that would be imediately useful to a much larger community of people with neurological deficits."

Funding for the research comes from the National Institutes of Health, the UW-Madison Institute for Clinical and Translational Research, the UW-Madison W.H. Coulter Translational Research Partnership in Biomedical Engineering and the Wisconsin Alumni Research Foundation.

Renee Meiller with the UW-Madison College of Engineering can be reached at meiller@engr.wisc.edu.

Comments

Christine Fife responded 5 years ago: #1

Interesting article. Strange to read this here--WTN News doesn't include a button for Tweeting about their articles. Or is the article saying we should think this to Twitter it?

Martin Clark responded 5 years ago: #2

Really amazing article. It appears that we are on the brink of a whole new age in interface communications.

Kristie Bowen responded 5 years ago: #3

This is the first I've heard about using technology in this way - it is incredible. Even five years ago the idea of "locked-in" patients being able to communicate in this way would have been laughable. How amazing that researchers have been able to take the slight changes in how the eye reads images and translate it into being able to put together words and sentences. I look forward to reading more about this amazing technology.

Vanessa Richards responded 5 years ago: #4

This is simply fascinating. As technology and engineering advances, it will be interesting to see where this will be at in 5-10 years. By that time it may be a small little device that is implanted on a baseball cap.

Alma Cuellar responded 5 years ago: #5

Interesting article. As techonology changes so does the way we communicate. Especially with the EEG. The EEG is said to be used for patients with head or brain injury. Now it is being used for the way we communicate. This is very interesting in how techonolgy is being used.

-Add Your Comment

Name:
E-mail:

Comment Policy: WTN News accepts comments that are on-topic and do not contain advertisements, profanity or personal attacks. Comments represent the views of the individuals who post them and do not necessarily represent the views of WTN Media or our partners, advertisers, or sources. Comments are moderated and are not immediately posted. Your email address will not be posted.

WTN Media cannot accept liability for the content of comments posted here or verify their accuracy. If you believe this comment section is being abused, contact edit@wistechnology.com.

WTN Media Presents