Advertisement
*
Reproduction permitted for personal use only. For reprints and reprint permission, contact reprints@wistechnology.com.

The more ways to produce stem cells, the better. That’s how science works

Madison, Wis. – It’s an understandable question: If human embryonic stem cells can be produced by “reprogramming” the genes in a person’s skin cells, then why continue to pursue research involving stem cells that come from human embryos that must be destroyed in order to gather them?

Now that a team from the Harvard Stem Cell Institute has turned ordinary skin cells into what appear to be embryonic stem cells, some people will push to discontinue the “traditional” process of manipulating human eggs. Critics of the process pioneered by UW-Madison scientists will argue it’s unethical to use human embryos to create stem cells when other pathways exist.

If only it was that simple. While the Harvard breakthrough deserves to be pursued by scientists elsewhere, it would be a mistake to shift all the hopes and dreams of stem cell research into one experimental method. That’s not how science works.

Exploring multiple ways to create and grow human embryonic stem cells – the building blocks of human life – is too important to be left to one line of research. That’s just as true for the process established in 1998 by UW-Madison developmental biologist James Thomson and his team as it for research involving adult stem cells, stem cells from placentas and umbilical cords, or the latest discovery involving skin cells.

The discovery process surrounding stem cell research involves a variety of options, with scientists in different places checking and cross-checking the work of others in what is still a relatively young field. If a scientist at Harvard figures out how to transform a skin cell into a hybrid stem cell, you can bet scientists elsewhere will be trying to replicate the work and test its applications.
Advertisement
The technique announced last week uses laboratory-grown human embryonic stem cells – such as the ones President Bush has already approved for use by federally funded researchers – to reprogram the genes in a person’s skin cell, turning that skin cell into an embryonic stem cell itself.

The advantage is that the hybrid stem cell carries the DNA of the person who provided the skin cells. That means – in theory – any tissue grown from those cells could be transplanted back into the donor without much risk of rejection.

The disadvantage is the same: Because it carries the DNA of the donor, most scientists believe the excess DNA must be removed before the hybrid, or “fusion,” cells could be coaxed into growing into a liver, a pancreas or some other body part.

“If this stuff proves to work, that’s wonderful,” said John Gearhart, a stem cell researcher at Johns Hopkins Medical Institutions in Baltimore, Md. In an interview with the Washington Post, Gearhart said the extra DNA remains “problematic.”

“We’re just not there yet, and it’s going to take a long time to demonstrate that. Meanwhile, other techniques already work well, so let’s get on with it,” Gearhart said.

That attitude probably summarizes the outlook of many scientists. New techniques are certainly worth exploring, but work must continue on processes that are already known to work. Federal, state and private research dollars are too scarce to abandon the tried and true on the basis of very preliminary evidence.

The skin-to-stem-cell announcement demonstrates the importance of letting researchers do what they do best – research. Science itself will determine what pathways are the most feasible, the most economical and, in the long run, the most ethical. When it comes to science, the best policy is to let a thousand flowers bloom in hopes that a few will also bear fruit.

Tom Still is president of the Wisconsin Technology Council. He is the former associate editor of the Wisconsin State Journal in Madison.

The opinions expressed herein or statements made in the above column are solely those of the author and do not necessarily reflect the views of Wisconsin Technology Network, LLC. (WTN). WTN, LLC accepts no legal liability or responsibility for any claims made or opinions expressed herein.

Comments

Brian responded 9 years ago: #1

Science decides what is most ethical? That's a bit like Microsoft deciding what software works best on your personal computer. Science is an art of discovery. It is subject to the ethics and decisions of the scientist. When you personify science as the highest authority, it becomes useless as a tool for (in this case) human health and instead becomes a insatiable slave driver, content only to expand it's control over it's slaves. In actuality, Science makes no decisions on economics or ethics. You do.

Keith responded 8 years ago: #2

Is science ethical. No. That's not the way it's designed. It's only a tool. But lately it appears scientists have displayed more ethics that those engaged in religion.

Nevertheless, science without some religion in the background is barbarism, religion without science is Medieval.

-Add Your Comment

Name:
E-mail:

Comment Policy: WTN News accepts comments that are on-topic and do not contain advertisements, profanity or personal attacks. Comments represent the views of the individuals who post them and do not necessarily represent the views of WTN Media or our partners, advertisers, or sources. Comments are moderated and are not immediately posted. Your email address will not be posted.

WTN Media cannot accept liability for the content of comments posted here or verify their accuracy. If you believe this comment section is being abused, contact edit@wistechnology.com.

WTN Media Presents